Exercise Sheet 1

Due 8.10.2020

This is a 'warm-up' sheet, exercises are voluntary and count as a bonus.

Problem 1. Let $f, g, h: \mathbb{N} \to \mathbb{R}_{\geq 0}$. Which of the following are true?

- (a) 2n = O(n),
- (b) n = o(5n),
- (c) for all $\varepsilon > 0$, we have $n = O(\varepsilon n^2)$,
- (d) $2n \sim n$,
- (e) If f(n) = O(g(n)) and g(n) = o(h(n)), then f(n) = o(h(n)).
- (f) We have f(n) = O(g(n)) if and only if $g(n) = \Omega(f(n))$.

Problem 2. Let *S* be a set of cardinality $n \ge 1$. Show that *S* has 2^{n-1} subsets of odd cardinality by constructing a bijection between the subsets of odd cardinality and the subsets of even cardinality.

Problem 3. Let $f, g, h : \mathbb{N} \to \mathbb{R}_{>0}$ be such that

$$f(n) = O(h(n)),$$
 $q(n) = O(h(n)),$ and $h(n) = o(1).$

(a) Show that f(n) + g(n) = O(h(n)), that f(n)g(n) = o(h(n)), and that

$$\frac{1}{1 + f(n)} = 1 + O(h(n)).$$

(b) Use (a) to show

$$\binom{2n}{n} = \frac{4^n}{\sqrt{\pi n}} \Big(1 + O\Big(\frac{1}{n}\Big) \Big).$$

Problem 4. Construct functions $f, g: \mathbb{N} \to \mathbb{R}_{\geq 0}$ such that $f(n) \neq O(g(n))$ and $g(n) \neq O(f(n))$. Can you make f and g non-decreasing?