Makeup Exam for Problem Session (UE)

25.2.2021

Problem 1. A sequence $(a_n)_{n\geq 0}$ in \mathbb{R} satisfies

$$-2a_n + 3a_{n-1} + 2a_{n-2} = 0$$
 $(n \ge 2)$, $a_0 = \frac{11}{2}$, $a_1 = \frac{49}{4}$.

Determine the asymptotic growth of $(a_n)_{n\geq 0}$.

Problem 2. We denote by \mathbb{C}^k the space of k-dimensional column vectors over \mathbb{C} , and by $\mathbb{C}^{k \times n}$ the space of $k \times n$ -matrices. Show that

$$\mathbb{C}^k \times \mathbb{C}^n \to \mathbb{C}^{k \times n}, \qquad (x, y) \mapsto xy^T$$

is a tensor map.

Problem 3. Let G = (V, E) be a graph and $d_G(v) = 1$ for some $v \in V$. Show that G is a tree if and only if $G[V \setminus v]$ is a tree.

Problem 4. Let R be a ring and let $f: M \to N$ be an R-epimorphism. Show: if N and $\ker(f)$ are finitely generated, then M is finitely generated.