Exercise Sheet 4

Due 29.10.2020

Problem 1. A *unary-binary tree* is a plane (unlabeled) tree where each vertex has 0, 1, or 2 descendants. (Recall that in a plane tree the descendants are ordered, e.g., a binary tree is a plane tree where each vertex has 0 or 2 descendants, and if there are descendants, then there is a left and a right descendant.)

(a) Show that the OGF for unary-binary trees is

$$M(z) = \frac{1 - z - \sqrt{(1+z)(1-3z)}}{2z}.$$

- (b) ...
- (c) Use singularity analysis to show

$$[z^n]M(z) = 3^n \sqrt{\frac{3}{4\pi n^3}} \left(1 - \frac{15}{16n} + O\left(\frac{1}{n^2}\right)\right).$$

Solution to (c) First note that M(z), as stated, has a singularity at 0. However, since $\lim_{z\to 0} M(z)$ exists, the singularity at 0 is removable (e.g., use Riemann's theorem on removable singularities 1). After continuing M(z) analytically to 0, the dominant singularity is $\frac{1}{3}$. Thus M(z) may be extended analytically to the open disc $B(0,\frac{1}{3})$ centered at 0 with radius $\frac{1}{3}$. Since the term $\sqrt{(1+z)(1-3z)}$ is analytic in $\mathbb{C}\setminus ((-\infty,-1]\cup [\frac{1}{3},\infty))$, the same is true for M(z). Thus there exists a Δ -domain $\Delta_0=\Delta_0(r,\varphi)$ such that M(z) is analytic in $\frac{1}{3}\Delta_0$ (here r>0, $\varphi\in (0,\pi/2)$ can be chosen arbitrarily).

At this point we write $M(z) = f(z) - g(z)\sqrt{1-3z}$ with $f(z) = \frac{1-z}{2z}$ and $g(z) = \frac{\sqrt{1+z}}{2z}$. Since both f(z) and g(z) are analytic at 1/3, we obtain Taylor series expansions

$$f(z) = 1 + \frac{3}{2}(1 - 3z) + O((1 - 3z)^2)$$

$$g(z) = \sqrt{3} + \frac{7}{8}\sqrt{3}(1 - 3z) + O((1 - 3z)^2).$$

(If we just want \sim -growth, of course fewer terms are needed.) This gives a singular expansion $M(z) = S(z) + O((1-3z)^2)$ with

$$S(z) = 1 - \sqrt{3}(1 - 3z)^{1/2} + \frac{3}{2}(1 - 3z) - \frac{7}{8}\sqrt{3}(1 - 3z)^{3/2}.$$

Now we want to apply Theorem 1.4.20 ("Big-Oh, Little-Oh Transfer"). For purposes of illustration we do it very explicitly once. Note that M(z) - S(z) is analytic in $\frac{1}{3}\Delta_0$.

¹Another way: Expand the numerator as power series at 0 and note that the constant term vanishes. Therefore the quotient is still analytic.

Therefore $M(\frac{z}{3}) - S(\frac{z}{3})$ is Δ -analytic and therefore satisfies the assumptions of the theorem. We find²

$$[z^n](M(\frac{z}{3}) - S(\frac{z}{3})) = O(n^{-3}).$$

Therefore

$$[z^n]M(z) = 3^n M(\frac{z}{3}) = 3^n S(\frac{z}{3}) + O(n^{-3}).$$

The problem is therefore reduced to determining the asymptotic growth of $[z^n]S(z/3)$ to sufficient order. For \sim -growth, it suffices to note $[z^n]S(z/3) \sim -\sqrt{3}n^{-3/2}\Gamma(-1/2)^{-1}$ (coming from the $-\sqrt{3}(1-3z)^{1/2}$ -term). Since $z\Gamma(z) = \Gamma(z+1)$, we have $\Gamma(-1/2) = -2\Gamma(1/2) = -2\sqrt{\pi}$. Thus

$$[z^n]M(z) \sim 3^n \sqrt{3} \frac{1}{\sqrt{4\pi n^3}}.$$

(Note that the polynomial summands don't matter, because they only have finally many nonzero coefficients. Explicitly, for p(z) a polynomial we have $[z^n]p(z) = O(n^{-k})$ for all $k \ge 1$.)

To obtain additional terms of the asymptotic expansion, we need better asymptotics on $[z^n](1-z)^{-\alpha}$ in the case $\alpha=-1/2$. We refer to [FS09, Theorem VI.1] or [FS09, Figure VI.5 on p.372] to find, e.g.,

$$(1-z)^{1/2} = -\frac{1}{\sqrt{\pi n^3}} \left(\frac{1}{2} + \frac{3}{16n} + O(n^{-2}) \right),$$

$$(1-z)^{3/2} = \frac{1}{\sqrt{\pi n^5}} \left(\frac{3}{4} + O(n^{-1}) \right).$$

Thus, substituting into the formula for S(z),

$$[z^n]M(z) = 3^n \sqrt{3} \left[\frac{1}{\sqrt{\pi n^3}} \left(\frac{1}{2} + \frac{3}{16n} + O(n^{-2}) \right) - \frac{7}{8} \frac{1}{\sqrt{\pi n^5}} \left(\frac{3}{4} + O(n^{-1}) \right) \right]$$

And, gathering terms,

$$M(z) = \frac{3^n \sqrt{3}}{\sqrt{4\pi n^3}} \left[1 - \frac{15}{16n} + O(n^{-2}) \right].$$

Clearly, additional terms can be computed by (i) computing the Taylor series of f(z), g(z) to higher order; and (ii) computing coefficient-asymptotics of $(1-z)^{-\alpha}$ for $\alpha = -1/2$, -3/2, -5/2, . . ., to sufficient order.

²Technically, the theorem as stated in the notes is not applicable for $\alpha = -2$. But the first part still holds; alternatively, replace $O((1-3z)^2)$ by $O((1-3z)^{2-\varepsilon})$ for arbitrarily small $\varepsilon > 0$...